Протокол usb 2.0. Типы и стандарты USB. Контакты разъёма и разводка кабеля USB Type-C

В конце 2008 года. Как и можно было ожидать, новый стандарт увеличил пропускную способность, хотя прирост не такой значительный, как 40-кратное увеличение скорости при переходе от USB 1.1 на USB 2.0. В любом случае, 10-кратное повышение пропускной способности можно приветствовать. USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с. Пропускная способность почти в два раза превышает современный стандарт Serial ATA (3 Гбит/с с учётом передачи информации избыточности).

Логотип USB 3.0

Каждый энтузиаст подтвердит, что интерфейс USB 2.0 является основным «узким местом» современных компьютеров и ноутбуков, поскольку его пиковая «чистая» пропускная способность составляет от 30 до 35 Мбайт/с. Но у современных 3,5″жёстких дисков для настольных ПК скорость передачи уже превысила 100 Мбайт/с (появляются и 2,5″ модели для ноутбуков, приближающиеся к данному уровню). Скоростные твёрдотельные накопители успешно превзошли порог 200 Мбайт/с. А 5 Гбит/с (или 5120 Мбит/с) соответствует 640 Мбайт/с.

Мы не думаем, что в обозримом будущем жёсткие диски приблизятся к уровню 600 Мбайт/с, но следующие поколения твёрдотельных накопителей могут превысить это число уже через несколько лет. Увеличение пропускной способности становится всё более важным, поскольку количество информации увеличивается, соответственно, растёт и время её резервирования. Чем быстрее работает хранилище, тем меньше будет время резервирования, тем проще будет сделать «окна» в расписании резервирования.

Таблица сравнения скоростных характеристик USB 1.0 – 3.0

Цифровые видеокамеры сегодня могут записывать и хранить гигабайты видеоданных. Доля HD-видеокамер увеличивается, а им требуются более ёмкие и быстрые хранилища для записи большого количества данных. Если использовать USB 2.0, то на передачу нескольких десятков гигабайт видеоданных на компьютер для монтажа потребуется значительное время. USB Implementers Forum считает, что пропускная способность останется принципиально важной, и USB 3.0 будет достаточно для всех потребительских устройств на протяжении ближайших пяти лет.

Кодирование 8/10 бит

Чтобы гарантировать надёжную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит, знакомое нам, например, по Serial ATA. Один байт (8 бит) передаётся с помощью 10-битного кодирования, что улучшает надёжность передачи в ущерб пропускной способности. Поэтому переход с битов на байты осуществляется с соотношением 10:1 вместо 8:1.

Сравнение пропускной способности USB 1.x – 3.0 и конкурентов

Режимы энергосбережения

Конечно, основной целью интерфейса USB 3.0 является повышение доступной пропускной способности , однако новый стандарт эффективно оптимизирует энергопотребление . Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия. Напротив, у USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в «сон».

Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы. Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.

Больший ток

Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током . Если USB 2.0 предусматривал порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных, пусть даже это нарушало спецификации USB 2.0.

Новые кабели, разъёмы, цветовое кодирование

Стандарт USB 3.0 обратно совместим с USB 2.0 , то есть вилки кажутся такими же, как и обычные вилки типа A. Контакты USB 2.0 остались на прежнем месте, но в глубине разъёма теперь располагаются пять новых контактов. Это означает, что вам нужно полностью вставлять вилку USB 3.0 в порт USB 3.0, чтобы удостовериться в режиме работы USB 3.0, для которого требуются дополнительные контакты. Иначе вы получите скорость USB 2.0. USB Implementers Forum рекомендует производителям использовать цветовое кодирование Pantone 300C на внутренней части разъёма.

Ситуация получилась схожей и для USB-вилки типа B, хотя различия визуально более заметны. Вилку USB 3.0 можно определить по пяти дополнительным контактам .

USB 3.0 не использует волоконную оптику , поскольку она слишком дорога для массового рынка. Поэтому перед нами старый добрый медный кабель. Однако теперь у него будет девять, а не четыре провода. Передача данных осуществляется по четырём из пяти дополнительных проводов в дифференциальном режиме (SDP–Shielded Differential Pair). Одна пара проводов отвечает за приём информации, другая – за передачу. Принцип работы похож на Serial ATA, при этом устройства получают полную пропускную способность в обоих направлениях. Пятый провод – «земля».

Всем привет. Иногда людям интересно узнать, чем USB 3.0 отличается от USB 2.0, иногда хотят понять какая версия или какой тип USB разъема имеется у них на компьютере, что за динозавр такой USB 1.0 и так далее. Давайте немного углубимся в эту тему.

Стандарт USB появился еще в середине 90х годов. Расшифровывается USB вот как – универсальная последовательная шина (Universal Serial Bus) . Этот стандарт был разработан специально для коммуникации периферийных устройств с компьютером, и сейчас занимает лидирующие позиции среди всех типов коммуникационных интерфейсов. Это и неудивительно. Сейчас сложно себе представить хоть какой-то девайс без USB разъема, хоть эти разъемы и различаются по типам.

Типы USB разъемов

На сегодняшний день существует достаточно большое количество типов USB разъемов. Какие-то больше распространены, какие-то меньше. В общем, давай на них взглянем.

USB type- A – один из самых распространенных типов USB разъемов. Вы могли видеть его на вашем , на , на блоке зарядного устройства и не только. Имеет множество применений. С его помощью можно подсоединять мышки и клавиатуры к компьютеру (или другому устройству), флешки, внешние накопители, смартфоны и так далее. Этот список можно еще долго продолжать, если пораскинуть мозгами.

USB type- B – разъем используется в основном для того, чтобы подключить к компьютеру принтер либо другие периферийные устройства. Получил намного меньшее распространение, нежели USB type-A.

Mini USB был весьма распространен на мобильных устройствах до появления Micro USB. Сейчас встречается очень редко, но все же можно его встретить еще на некоторых старых устройствах. У меня на портативной аудиоколонке разъем Mini USB принимает электроэнергию для зарядки аккумулятора. Колонку эту покупал лет 5 назад (живучая оказалась).

Micro USB сейчас используется на смартфонах и мобильных телефонах почти всех производителей. Этот USB разъем обрел невероятную популярность среди мобильных устройств. Однако постепенно его позиции занимает USB Type-C.

Версия USB 1.0 – археологические раскопки

Прапрапрадед стандарта USB – USB 1.0 появился на свет холодным ноябрем 1995 года. Но родился он немного недоношенным и большой популярности не обрел. А вот его младший брат USB 1.1, появившийся на свет тремя годами позже, был более жизнеспособным экземпляром и смог привлечь к себе достаточно внимания.

Что касается технической части, то скорость передачи данных была небольшой, но по меркам тех времен этой скорости было более чем достаточно. Скорость составляла до 12 Мбит/с и это в режиме высокой пропускной способности.

Отличия разъемов USB 2.0 и USB 3.0

USB 2.0 и USB 3.0 – это два вполне современных USB стандарта, которые сейчас используются повсеместно в компьютерах и ноутбуках. USB 3.0, конечно же, новее и быстрее, а также имеет полную обратную совместимость с USB 2.0 устройствами. Но скорость в таком случае будет ограничена максимальной скоростью по стандарту USB 2.0.

Теоретически скорость передачи данных стандарта USB 3.0 примерно в 10 раз выше, чем у USB 2.0 (5 Гбит/с против 480 Мбит/с). Но на практике скорость обмена информацией между устройствами часто бывает ограничена самими устройствами. Хотя в целом, USB 3.0 все же выигрывает.

Технические отличия

Хоть стандарты USB 2.0 и USB 3.0 и обратносовместимы, но, тем не менее, они имеют некоторые технические отличия. USB 2.0 имеет 4 контакта – 2 для питания устройств и 2 для передачи данных. Эти 4 контакты были сохранены и в стандарте USB 3.0. Но кроме них были добавлены еще 4 контакта, которые нужны для высокой скорости передачи данных и более быстрой зарядки устройств. К слову, USB 3.0 может работать с силой тока до 1 Ампера.

В итоге шнур стандарта USB 3.0 стал толще, и его длина не превышает теперь 3 метра (в USB 2.0 максимальная длина достигала 5 метров). Зато вы сможете зарядить свой смартфон намного быстрее, даже если вы подсоедините несколько смартфонов в один разъем через разветвитель.

Естественно производители позаботились о визуальных отличиях. Можно не искать упаковку от материнской платы, чтобы посмотреть какие стандарты USB она поддерживает. И не нужно для этого лезть в настройки компьютера или в диспетчер устройств. Достаточно просто взглянуть на цвет вашего разъема. Разъем USB 3.0 почти всегда синего цвета. Очень редко он бывает еще красного цвета. В то время как USB 2.0 практически всегда черного цвета.

Так что теперь с одного меткого взгляда вы сможете определить у вас USB 2.0 или USB 3.0 на ноутбуке.

На этом, наверное, можно заканчивать разговор о том, чем отличается USB 2.0 от USB 3.0.

Вывод

Что мы узнали из этой статьи? Что USB делится на стандарты передачи данных, которые отличаются скоростью передачи данных. А также, что USB имеют большое количество типов разъемов.

И что самое интересное, о чем я забыл упомянуть в статье, это то, что типы разъемов могут комбинироваться следующим образом. Вы можете встретить полноразмерный разъем USB type-A и полноразмерный USB type-B, в то же время существует (но редко встречается) micro USB type-A и micro USB type-B (очень распространен). USB type-A может работать по протоколу USB 2.0, а может по протоколу USB 3.0. В общем при желании можно и запутаться.

А если вас беспокоит вопрос, с какими разъемами лучше выбрать себе ноутбук USB 2.0 или USB 3.0, то вообще не парьтесь. Сейчас все современные ноутбуки и компьютеры оснащены и тем и тем типом USB. Например, у меня на ноутбуке два разъема USB 2.0 и один разъем USB 3.0. И все три разъема типа USB type-A.

Вот такие они – USB!

Вы дочитали до самого конца?

Была ли эта статья полезной?

Да Нет

Что именно вам не понравилось? Статья была неполной или неправдивой?
Напишите в клмментариях и мы обещаем исправиться!

  • Mini-B Connector ECN : извещение выпущено в октябре 2000 года.
  • Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года.
  • Pull-up/Pull-down Resistors ECN
  • Errata, начиная с мая 2002 : извещение выпущено в мае 2002 года.
  • Interface Associations ECN : извещение выпущено в мае 2003 года.
    • Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
  • Rounded Chamfer ECN : извещение выпущено в октябре 2003 года.
  • Unicode ECN : извещение выпущено в феврале 2005 года.
    • Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE .
  • Inter-Chip USB Supplement : извещение выпущено в марте 2006 года.
  • On-The-Go Supplement 1.3 : извещение выпущено в декабре 2006 года.
    • USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.

USB OTG

USB 3.0

USB 3.0 находится на финальных стадиях разработки. Созданием USB 3.0 занимаются компании: Microsoft, Texas Instruments, NXP Semiconductors. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта будут физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии - пару для приёма/передачи данных, одну - для питания и ещё одну - для заземления. В дополнение к ним USB 3.0 добавляет пять новых линий (в результате чего кабель стал гораздо толще), однако новые контакты расположены параллельно по отношению к старым на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. USB 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь сможет не только подпитывать от одного хаба гораздо большее количество устройств, но и само аппаратное обеспечение, ранее поставлявшееся с отдельными блоками питания, избавится от них.


Здесь GND - цепь «корпуса» для питания периферийных устройств, VBus - +5 В, так же для цепей питания. Данные передаются по проводам D+ и D− дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов межу линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В. Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1.5 кОм (D− для режима Low-Speed и D+ для режима Full-Speed, устройства, работающие в режиме Hi-Speed, ведут себя на этой стадии как устройства в режиме Full-Speed). Так же иногда вокруг провода присутствует волокнистая обмотка для защиты от физических повреждений. .

Коннектор USB 3.0 тип B

Коннектор USB 3.0 тип А

Кабели и разъёмы USB 3.0

Недостатки USB

Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся. Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации.

USB и FireWire/1394

Протокол USB storage, представляющий собой метод передачи команд

Кроме того, USB storage не поддерживался в старых ОС (первоначальная Windows 98), и требовал установки драйвера. SBP-2 поддерживался и в них. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию прожига CD/DVD дисков на подключенном по USB дисководе, SBP-2 никогда не имел таких ограничений.

Шина USB строго ориентирована, потому соединение 2 компьютеров или же 2 периферийных устройств требует дополнительного оборудования. Некоторые производители поддерживают соединение принтера и сканера, или же фотоапарата и принтера, но эти реализации сильно завязаны на конкретного производителя и не стандартизированы. Шина 1394/FireWire не подвержена этому недостатку (можно соединить 2 видеокамеры).

Тем не менее, ввиду лицензионной политики Apple, а также намного более высокой сложности оборудования, 1394 менее распространен, материнские платы старых компьютеров не имеют 1394 контроллера. Что касается периферии, то поддержка 1394 обычно не встречается ни в чем, кроме видеокамер и корпусов для внешних жестких дисков и CD/DVD приводов.

См. также

  • FireWire
  • TransferJet

Источники

Ссылки

  • USB News (нем.)

История появления и развития стандартов Universal Serial Bus (USB)

    До появления первой реализации шины USB стандартная комплектация персонального компьютера включала один параллельный порт, обычно для подключения принтера (порт LPT), два последовательных коммуникационных порта (порты COM), обычно для подключения мыши и модема, и один порт для джойстика (порт GAME). Такая конфигурация была вполне приемлемой на заре появления персональных компьютеров, и долгие годы являлась практическим стандартом для производителей оборудования. Однако прогресс не стоял на месте, номенклатура и функциональность внешних устройств постоянно совершенствовались, что в конце концов привело к необходимости пересмотра стандартной конфигурации, ограничивающей возможность подключения дополнительных периферийных устройств, которых, с каждым днем становилось все больше и больше.

    Попытки увеличения количества стандартных портов ввода-вывода не могли привести к кардинальному решению проблемы, и возникла необходимость разработки нового стандарта, который бы обеспечивал простое, быстрое и удобное подключение большого количества разнообразных по назначению периферийных устройств к любому компьютеру стандартной конфигурации, что, в конце концов, привело к появлению универсальной последовательной шины Universal Serial Bus (USB)

    Первая спецификация последовательного интерфейса USB (Universal Serial Bus) , получившая название USB 1.0 , появилась в 1996 г. , усовершенствованная версия на ее основе, USB 1.1 - в 1998 г. Пропускная способность шин USB 1.0 и USB 1.1 - до 12 Мбит/с (реально до 1 мегабайта в секунду) была вполне достаточной для низкоскоростных периферийных устройств, вроде аналогового модема или компьютерной мышки, однако недостаточной для устройств с высокой скоростью передачи данных, что являлось главным недостатком данной спецификации. Однако, практика показала, что универсальная последовательная шина - это очень удачное решение, принятое практически всеми производителями компьютерного оборудования в качестве магистрального направления развития компьютерной периферии.

В 2000 г. появилась новая спецификация - USB 2.0 , обеспечивающая уже скорость передачи данных до 480 Мбит/с (реально до 32 мегабайт в секунду). Спецификация предполагала полную совместимость с предыдущим стандартом USB 1.X и вполне приемлемое быстродействие для большинства периферийных устройств. Начинается бум производства устройств, оснащенных интерфейсом USB. "Классические" интерфейсы ввода - вывода были полностью вытеснены и стали экзотикой. Однако, для части высокоскоростного периферийного оборудования даже удачная спецификация USB 2.0 оставалась узким местом, что требовало дальнейшего развития стандарта.

В 2005 г. была анонсирована спецификация для беспроводной реализации USB - Wireless USB - WUSB , позволяющей выполнять беспроводное подключение устройств на расстоянии до 3-х метров с максимальной скоростью передачи данных 480 Мбит/сек, и на расстоянии до 10 метров с максимальной скоростью 110 Мбит/сек. Спецификация не получила бурного развития и не решала задачу повышения реальной скорости передачи данных.

В 2006 г. была анонсирована спецификация USB-OTG (USB O n-T he-G o, благодаря которой стала возможной связь двух USB-устройств друг с другом без отдельного USB-хоста. Роль хоста в данном случае выполняет одно из периферийных устройств. Смартфонам, цифровым фотоаппаратам и прочим мобильным устройствам приходится быть как хостом, так и периферийным устройством. Например, при подключении по USB к компьютеру фотоаппарата, он является периферийным устройством, а при подключении принтеру он является хостом. Поддержка спецификации USB-OTG постепенно стала стандартом для мобильных устройств.

В 2008 г. появилась окончательная спецификация нового стандарта универсальной последовательной шины - USB 3.0 . Как и в предыдущих версиях реализации шины, предусмотрена электрическая и функциональная совместимость с предыдущими стандартами. Скорость передачи данных для USB 3.0 увеличилась в 10 раз - до 5 Гбит/сек. В интерфейсном кабеле добавились 4 дополнительные жилы, и их контакты были выведены отдельно от 4-х контактов предыдущих стандартов, в дополнительном контактном ряду. Кроме повышенной скорости передачи данных шина USB характеризуется еще и увеличившейся, по сравнению с предыдущими стандартами, силой тока в цепи питания. Максимальная скорость передачи данных по шине USB 3.0 стала приемлемой практически для любого, массово производимого периферийного компьютерного оборудования.

В 2013 году была принята спецификация следующего интерфейса - USB 3.1 , скорость передачи данных которого может достигать 10 Гбит/с. Кроме того, появился компактный 24-контактный разъём USB Type-C , который является симметричным, позволяя вставлять кабель любой стороной.

После выхода стандарта USB 3.1 организация USB Implementers Forum (USB-IF) объявила, что разъёмы USB 3.0 со скоростью до 5 Гбит/с (SuperSpeed) теперь будут классифицироваться как USB 3.1 Gen 1, а новые разъёмы USB 3.1 со скоростью до 10 Гбит/с (SuperSpeed USB 10Gbps) - как USB 3.1 Gen 2. Стандарт USB 3.1 обратно совместим с USB 3.0 и USB 2.0.

В 2017 году организация USB Implementers Forum (USB-IF) опубликовала спецификацию USB 3.2 . Максимальная скорость передачи составляет 10 Гбит/с. Однако в USB 3.2 предусмотрена возможность агрегации двух подключений (Dual-Lane Operation ), позволяющая увеличить теоретическую пропускную способность до 20 Гбит/с. Реализация этой возможности сделана опциональной, то есть ее поддержка на уровне оборудования будет зависеть от конкретного производителя и технической необходимости, которая отличается, например, для принтера и переносного жесткого диска. Возможность реализации данного режима предусмотрена только при использовании USB Type-C .

www.usb.org - Документация по спецификациям USB для разработчиков на английском языке.

Нельзя не отметить, что существовала, и пока еще существует, альтернатива шине USB. Еще до ее появления, компания Apple разработала спецификацию последовательной шины FireWire (другое название - iLink ), которая в 1995 г. была стандартизована Американским Институтом инженеров по электротехнике и электронике (IEEE) под номером 1394. Шина IEEE 1394 может работать в трех режимах: со скоростью передачи данных до 100, 200 и 400 Мбит/с. Однако, по причине высокой стоимости и более сложной реализации, чем USB, эта разновидность высокоскоростной последовательной шины, большого распространения не получила, и постепенно вытесняется USB 2.0 – USB 3.2.

Общие принципы работы периферийных устройств Universal Serial Bus (USB)

    Интерфейс USB оказался настолько удачным решением, что им оснастили практически все классы периферийных устройств, от мобильного телефона до веб-камеры или переносного жесткого диска. Наибольшее распространение получили (пока) устройства с поддержкой USB 2.0. Однако, USB 3.0 – 3.1 более востребован для высокоскоростных устройств, где он становится основным, постепенно вытесняя USB 2.0.

    Периферийные устройства, с поддержкой USB при подключении к компьютеру автоматически распознаются системой (в частности, программное обеспечение драйвера и пропускную способность шины), и готовы к работе без вмешательства пользователя. Устройства с небольшим энергопотреблением (до 500мА) могут не иметь своего блока питания и запитываться непосредственно от шины USB.

    Благодаря использованию USB отпадает необходимость снятия корпуса компьютера для установки дополнительных периферийных устройств, а также необходимость выполнения сложных настроек при их установке.

    USB устраняет проблему ограничения числа подключаемых устройств. При использовании USB с компьютером может одновременно работать до 127 устройств.

    USB позволяет выполнять "горячее" (оперативное) подключение. При этом не требуется предварительное выключение компьютера, затем подключение устройства, перезагрузка компьютера и настройка установленных периферийных устройств. Для отключения периферийного устройства не требуется выполнять процедуру, обратную описанной.

Проще говоря, USB позволяет фактически реализовать все преимущества современной технологии "plug and play" ("включай и работай"). Устройства, разработанные для USB 1.x могут работать с контроллерами USB 2.0. и USB 3.0

При подключении периферийного устройства вырабатывается аппаратное прерывание и управление получает драйвер HCD (Host Controller Driver ) контроллера USB (USB Host Controller - UHC ), который на сегодняшний день интегрирован во все выпускаемые чипсеты материнских плат. Он опрашивает устройство и получает от него идентификационную информацию, исходя из которой управление передается драйверу, обслуживающему данный тип устройств. UHC контроллер имеет корневой (root) концентратор (Hub), обеспечивающий подключение к шине устройств USB.

Концентратор (USB HUB).

Точки подключения называются портами . К порту, в качестве устройства, может быть подключен другой концентратор. Каждый концентратор имеет исходящий порт (upstream port ), соединяющие его с главным контроллером и нисходящие порты (downstream port ) для подключения периферийных устройств. Концентраторы могут обнаруживать, выполнять соединение и отсоединение в каждом порте нисходящей связи и обеспечивать распределение напряжения питания в устройства нисходящего соединения. Каждый из портов нисходящей связи может быть индивидуально активизирован и сконфигурирован на полной или низкой скорости. Концентратор состоит из двух блоков: контроллера концентратора и ретранслятора концентратора. Ретранслятор - работающий под управлением протокола коммутатор между портом восходящей связи и портами нисходящей связи. Концентратор содержит также аппаратные средства поддержки перевода в исходное состояние и приостановки/возобновления подключения. Контроллер обеспечивает интерфейсные регистры, обеспечивающие передачу данных в главный контроллер и обратно. Определенное состояние и управляющие команды концентратора позволяют главному процессору конфигурировать концентратор, а также контролировать и управлять его портами.


Внешние концентраторы могут иметь собственный блок питания или же запитываться от шины USB.

Кабели и разъемы USB

Разъемы типа А используются для подключения к компьютеру или концентратору. Разъемы типа B используются для подключения к периферийным устройствам.

Все разъёмы USB, имеющие возможность входить в соединение друг с другом, рассчитаны на совместную работу.

Имеется электрическая совместимости всех контактов разъёма USB 2.0 с соответствующими контактами разъёма USB 3.0. При этом разъём USB 3.0 имеет дополнительные контакты, не имеющие соответствия в разъёме USB 2.0, и, следовательно, при соединении разъёмов разных версий "лишние" контакты не будут задействованы, обеспечивая нормальную работу соединения версии 2.0. Все гнёзда и штекеры между USB 3.0 Тип A и USB 2.0 Тип A рассчитаны на совместную работу. Размер гнезда USB 3.0 Тип B несколько больше, чем это могло бы потребоваться для штекера USB 2.0 Тип B и более ранних. При этом предусмотрено подключение в эти гнёзда и такого типа штекеров. Соответственно, для подключения к компьютеру периферийного устройства с разъёмом USB 3.0 Тип B можно использовать кабели обоих типов, но для устройства с разъёмом USB 2.0 Тип B - только кабель USB 2.0. Гнёзда eSATAp, обозначенные как eSATA/USB Combo, то есть имеющие возможность подключения к ним штекера USB, имеют возможность подключения штекеров USB Тип A: USB 2.0 и USB 3.0, но в скоростном режиме USB 2.0.

Разъёмы USB Type-C служат для подключения как к периферийным устройствам, так и к компьютерам, заменяя различные разъёмы и кабели типов A и B предыдущих стандартов USB, и предоставляя возможности расширения в будущем. 24-контактный двухсторонний разъём является достаточно компактным, близким по размерам к разъёмам микро-B стандарта USB 2.0. Размеры разъёма - 8,4 мм на 2,6 мм. Коннектор предоставляет 4 пары контактов для питания и заземления, две дифференциальные пары D+/D- для передачи данных на скоростях менее SuperSpeed (в кабелях Type-C подключена только одна из пар), четыре дифференциальные пары для передачи высокоскоростных сигналов SuperSpeed, два вспомогательных контакта (sideband), два контакта конфигурации для определения ориентации кабеля, выделенный канал конфигурационных данных (кодирование BMC - biphase-mark code) и контакт питания +5 V для активных кабелей.

Контакты разъёма и разводка кабеля USB Type-C

Type-C - штекер и гнездо

Кон. Название Описание Кон. Название Описание
A1 GND Заземление B12 GND Заземление
A2 SSTXp1 Диф. пара № 1 SuperSpeed, передача, положительный B11 SSRXp1 Диф. пара № 2 SuperSpeed, приём, положительный
A3 SSTXn1 Диф. пара № 1 SuperSpeed, передача, отрицательный B10 SSRXn1 Диф. пара № 2 SuperSpeed, приём, отрицательный
A4 V BUS Питание B9 V BUS Питание
A5 CC1 Канал конфигурации B8 SBU2 Sideband № 2 (SBU)
A6 Dp1 Диф. пара не-SuperSpeed, положение 1, положительный B7 Dn2 Диф. пара не-SuperSpeed, положение 2, отрицательный
A7 Dn1 Диф. пара не-SuperSpeed, положение 1, отрицательный B6 Dp2 Диф. пара не-SuperSpeed, положение 2, положительный
A8 SBU1 Sideband № 1 (SBU) B5 CC2 Канал конфигурации
A9 V BUS Питание B4 V BUS Питание
A10 SSRXn2 Диф. пара № 4 SuperSpeed, передача, отрицательный B3 SSTXn2 Диф. пара № 3 SuperSpeed, приём, отрицательный
A11 SSRXp2 Диф. пара № 4 SuperSpeed, передача, положительный B2 SSTXp2 Диф. пара № 3 SuperSpeed, приём, положительный
A12 GND Заземление B1 GND Заземление
  1. Неэкранированная дифференциальная пара, может использоваться для реализации USB Low Speed (1.0), Full Speed (1.0), High Speed (2.0) - до 480 Мбит/с
  2. В кабеле реализована только одна из дифференциальных пар не-SuperSpeed. Данный контакт не используется в штекере.
Назначение проводников в кабеле USB 3.1 Type-C
Разъём №1 кабеля Type-C Кабель Type-C Разъём №2 кабеля Type-C
Контакт Название Цвет оболочки проводника Название Описание Контакт Название
Оплётка Экран Оплётка кабеля Экран Внешняя оплётка кабеля Оплётка Экран
A1, B1, A12, B12 GND Лужёный GND_PWRrt1
GND_PWRrt2
Общая земля> A1, B1, A12, B12 GND
A4, B4, A9, B9 V BUS Красный PWR_V BUS 1
PWR_V BUS 2
V BUS питание A4, B4, A9, B9 V BUS
B5 V CONN Жёлтый
PWR_V CONN V CONN питание B5 V CONN
A5 CC Синий CC Канал конфигурирования A5 CC
A6 Dp1 Белый UTP_Dp Неэкранированная дифференциальная пара, positive A6 Dp1
A7 Dn1 Зелёный UTP_Dn Неэкранированная дифференциальная пара, negative A7 Dn1
A8 SBU1 Красный SBU_A Полоса передачи данных A B8 SBU2
B8 SBU2 Чёрный SBU_B Полоса передачи данных B A8 SBU1
A2 SSTXp1 Жёлтый * SDPp1 Экранированная дифференциальная пара #1, positive B11 SSRXp1
A3 SSTXn1 Коричневый * SDPn1 Экранированная дифференциальная пара #1, negative B10 SSRXn1
B11 SSRXp1 Зелёный * SDPp2 Экранированная дифференциальная пара #2, positive A2 SSTXp1
B10 SSRXn1 Оранжевый * SDPn2 Экранированная дифференциальная пара #2, negative A3 SSTXn1
B2 SSTXp2 Белый * SDPp3 Экранированная дифференциальная пара #3, positive A11 SSRXp2
B3 SSTXn2 Чёрный * SDPn3 Экранированная дифференциальная пара #3, negative A10 SSRXn2
A11 SSRXp2 Красный * SDPp4 Экранированная дифференциальная пара #4, positive B2 SSTXp2
A10 SSRXn2 Синий * SDPn4 Экранированная дифференциальная пара #4, negative B3 SSTXn2
* Цвета для оболочки проводников не установлены стандартом

Подключение ранее выпущенных устройств к компьютерам, оснащённым разъёмом USB Type-C, потребует кабеля или адаптера, имеющих штекер или разъём типа A или типа B на одном конце и штекер USB Type-C на другом конце. Стандартом не допускаются адаптеры с разъёмом USB Type-C, поскольку их использование могло бы создать «множество неправильных и потенциально опасных» комбинаций кабелей.

Кабели USB 3.1 с двумя штекерами Type-C на концах должны полностью соответствовать спецификации - содержать все необходимые проводники, должны быть активными, включающими в себя чип электронной идентификации, перечисляющий идентификаторы функций в зависимости от конфигурации канала и сообщения, определяемые вендором (VDM) из спецификации USB Power Delivery 2.0. Устройства с разъёмом USB Type-C могут опционально поддерживать шины питания с током в 1,5 или 3 ампера при напряжении 5 вольт в дополнение к основному питанию. Источники питания должны уведомлять о возможности предоставления увеличенных токов через конфигурационный канал либо полностью поддерживать спецификацию USB Power Delivery через конфигурационный контакт (кодирование BMC) или более старые сигналы, кодируемые как BFSK через контакт VBUS. Кабели USB 2.0, не поддерживающие шину SuperSpeed, могут не содержать чип электронной идентификации, если только они не могут передавать ток 5 ампер.

Спецификация коннекторов USB Type-C версии 1.0 была опубликована форумом разработчиков USB в августе 2014 года. Она была разработана примерно в то же время, что и спецификация USB 3.1.

Использование коннектора USB Type-C не обязательно означает, что устройство реализует высокоскоростной стандарт USB 3.1 Gen1/Gen2 или протокол USB Power Delivery.

    Универсальная последовательная шина является самым распространенным, и наверно, самым удачным компьютерным интерфейсом периферийных устройств за всю историю развития компьютерного оборудования, что подтверждается огромным количеством USB - устройств, некоторые из которых могут показаться несколько